Ячейка оперативной памяти это определение

Ячейка оперативной памяти это определение

Оперативная память (ОЗУ, RAM), самая известная из всех рассмотренных ранее форм компьютерной памяти. Эту память называют памятью «произвольного доступа» («random access»), поскольку вы можете получить доступ к любой ее ячейке непосредственно. Для этого достаточно знать строку и столбец, на пересечении которых находится нужная ячейка. Известны два основных вида оперативной памяти: динамическая и статическая. Сегодня мы подробно рассмотрим принцип «дырявого ведра», на котором основана динамическая память. Некоторое внимание будет уделено и статической памяти, быстрой, но дорогой.

Ячейка памяти подобна дырявому ведру

Подобно подробно рассмотренному ранее микропроцессору, чип памяти является интегральной микросхемой (ИС, IC), собранной из миллионов транзисторов и конденсаторов. Одним из наиболее распространенных видов памяти произвольного доступа является DRAM (динамическая память произвольного доступа, dynamic random access memory). В ней транзистор и конденсатор спарены и именно они образуют ячейку, содержащую один бит информации. Конденсатор содержит один бит информации, то есть «0» или «1». Транзистор же играет в этой паре роль переключателя (свитча), позволяющего управляющей схеме чипа памяти считывать или менять состояние конденсатора.

Конденсатор можно представить себе в виде небольшого дырявого «ведерка», которое при необходимости заполняется электронами. Если оно заполнено электронами, его состояние равно единице. Если опустошено, то нулю. Проблемой конденсатора является утечка. За считанные миллисекунды (тысячные доли секунды) полный конденсатор становится пустым. А это значит, что или центральный процессор, или контроллер памяти вынужден постоянно подзаряжать каждый из конденсаторов, поддерживая его в наполненном состоянии. Подзарядку следует осуществлять до того, как конденсатор разрядится. С этой целью контроллер памяти осуществляет чтение памяти, а затем вновь записывает в нее данные. Это действие обновления состояния памяти осуществляется автоматически тысячи раз за одну только секунду.

Конденсатор динамической оперативной памяти можно сравнить с протекающим ведром. Если его не заполнять электронами снова и снова, его состояние станет нулевым. Именно эта операция обновления и внесла в название данного вида памяти слово «динамическая». Такая память или обновляется динамически, или «забывает» все, что она «помнила». Есть у этой памяти существенный недостаток: необходимость постоянно обновлять ее требует времени и замедляет работу памяти.

Устройство ячейки динамической оперативной памяти (DRAM)

Итак, представим себе тетрадный лист. Некоторые клеточки закрашены красным фломастером, а некоторые остались белыми. Красные клеточки это ячейки, состояние которых «1», а белые — «0».

Только вместо листа из тетради в оперативной памяти используется кремниевая пластина, в которую «впечатаны» столбцы (разрядные линии, bitlines) и строки (словарные шины, wordlines). Пересечение столбца и строки является адресом ячейки оперативной памяти.

Динамическая оперативная память передает заряд по определенному столбцу. Этот заряд называют стробом адреса столбца (CAS, Column Adress Strobe) или просто сигналом CAS. Этот сигнал может активировать транзистор любого бита столбца. Управляющий сигнал строки именуется стробом адреса строки (RAS, Row Adress Strobe). Для указания адреса ячейки следует задать оба управляющих сигнала. В процессе записи конденсатор готов принять в себя заряд. В процессе чтения усилитель считывания (sense-amplifier) определяет уровень заряда конденсатора. Если он выше 50 %, бит читается, как «1»; в остальных случаях, как «0».

Осуществляется также обновление заряда ячеек. За порядком обновления следит счетчик. Время, которое требуется на все эти операции, измеряется в наносекундах (миллиардных долях секунды). Если чип памяти 70-наносекундный, это значит, полное чтение и перезарядка всех его ячеек займет 70 наносекунд.

Сами по себе ячейки были бы бесполезны, если бы не существовало способа записать в них информацию и считать ее оттуда. Соответственно, помимо самих ячеек, чип памяти содержит целый набор дополнительных микросхем. Эти микросхемы выполняют следующие функции:

  • Идентификации строк и столбцов (выбор адреса строки и адреса ячейки)
  • Отслеживание порядка обновления (счетчик)
  • Чтение и возобновление сигнала ячейки (усилитель)
  • Донесение до ячейки сведений о том, следует ли ей удерживать заряд или нет (активация записи)

У контроллера памяти есть и другие функции. Он выполняет набор обслуживающих задач, среди которых следует отметить идентификацию типа, скорости и объема памяти, а также проверку ее на ошибки.

Статическая оперативная память

Статическая оперативная память быстрее, но и стоит дороже. По этой причине статическая память используется в кэше центрального процессора, а динамическая в качестве системной оперативной памяти компьютера. Более подробно о статической памяти написано в разделе «Кэш-память и регистр процессора» материала, посвященного преодолению ограничений компьютерной памяти.

В современном мире чипы памяти комплектуются в компонент, именуемый модулем. Порой компьютерные специалисты называют его «планкой памяти». Один модуль или «планка» содержит несколько чипов памяти. Не исключено, что вам приходилось слышать такие определения, как «память 8×32» или «память 4×16». Разумеется, цифры могли быть иными. В этой простой формуле первым множителем является количество чипов в модуле, а вторым емкость каждого модуля. Только не в мегабайтах, а в мегабитах. Это значит, что результат действия умножения следует разделить на восемь, чтобы получить объем модуля в привычных нам мегабайтах.

Читайте также:  Как вставить симку в телефон honor

К примеру: 4×32 означает, что модуль содержит четыре 32-мегабитных чипа. Умножив 4 на 32, получаем 128 мегабит. Поскольку нам известно, что в одном байте восемь бит, нам нужно разделить 128 на 8. В итоге узнаем, что «модуль 4×32» является 16-мегабайтным и устарел еще в конце минувшего века, что не мешает ему быть превосходным простым примером для тех вычислений, которые нам потребовались.

Тема оперативной памяти настолько обширна, что мы вернемся к ней еще. Нам предстоит узнать о том, какие бывают типы оперативной памяти и как устроен ее модуль. Продолжение следует…

Рассмотрим память компьютера, которая по отношению к процессору является внутренней. Внутренняя память компьютера — это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания. Такая память в свою очередь также различается по типам:

ОЗУ (оперативное запоминающие устройство)

ПЗУ (постоянное запоминающие устройство)

Оперативная память или ОЗУ

Оперативная память (RAM Random Access Memory) — это массив кристаллических ячеек, способных хранить данные. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени.

В ячейку можно записать только 0 или 1, т.е. 1 бит информации. Такая ячейка так и называется — «бит». Это наименьшая частица памяти компьютера и в связи с этим память имеет битовую структуру, которая определяет такое свойство оперативной памяти, как дискретность .

Оперативную память в компьютере размещают на стандар­тных панельках, называемых модулями. Модули вставляются в соответс­твующие разъемы на материнской плате. Такая конструкция облегчает процесс замены или наращивания памяти. Количество модулей зависит от нужного вам объема ОЗУ. Важнейшей характеристикой модулей оперативной памяти является быстродействие, которое зависит от максимально возможной частоты операций записи или считывания информации из ячеек памяти. Современные модули памяти обеспечивают частоту до 800 МГц, а их информационная емкость достигает 2 Гб. Hynix разработала модули памяти DDR2-800 объемом в 2 Гб

Рис.1 Модуль памяти

Мы знаем, что ОЗУ энергозависима, поэтому в целях сохранения, хранимой в ней информации необходимо подзаряжать ячейки этой памяти, этот процесс называется регенерация ОЗУ. Иными словами под регенерацией понимается восстановление заряда ячеек.

Различают динамическую память (DRAM) и статическую память (SRAM).

Память типа DRAM

DRAM (Dynamic Random Access Memory, динамическая оперативная память с произвольным доступом) — тип памяти, содержимое которой может сохраняться только в том случае, если оно будет обновляться через короткие интервалы времени. Динамическому ОЗУ нужна регенерация. DRAM применяется для производства модулей оперативной памяти.

Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости. Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды.

Память типа sram

SRAM (Static RAM, статическая память) – после записи данных в ячейки статической памяти они могут сохранять свое значение сколько угодно (в отличие от динамической памяти). SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры. Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Все это определило использование ее в качестве буферной кэш-памяти.

Подведём итоги сравнения оперативной памяти:

малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле;

малое потребление мощности.

необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти;

при отсутствии питания стирается вся информация.

в связи с дороговизной память типа SRAM используется, в основном только как КЭШ L1 и L2 1

маленькая плотность упаковки

Постоянная память или ПЗУ

Первую свою команду процессор находит в памяти, которая в отличие от магнитных и оптических дисков является внутренней и, в отличие от ОЗУ, энергонезависимой, т.е. хранит информацию постоянно, даже после выключения компьютера.

Такая память действительно существует и называется ПЗУ (ROM Read Only Memory, память только для чтения) — постоянное запоминающее устройство. Микросхема ПЗУ устанавливается так, что ее память занимает нужные адреса. Поэтому процессор, когда начинает свою работу, в постоянную память, заготовленную для него заранее. Из ПЗУ можно только читать информацию.

Читайте также:  Пацаны в шмоте на аву

В постоянной памяти хранятся программы, необходимые для запуска компьютера и «зашитые» в нее при изготовлении. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособной компьютерной системы сразу после включения.

Итак, в ПЗУ хранится информации об устройствах компьютера, т.е. параметры и характеристики монитора, жесткого диска, мыши и т.д. для того, чтобы при включении компьютера, прежде чем начать работу, можно было убедиться, что все они работоспособны.

Необходима такая память, в которую можно было бы записывать информацию (в отличие от ПЗУ) и которая была бы энергонезависимой (отличие от ОЗУ). И такая память действительно существует и по технологии изготовления называется она CMOS.

CMOS — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки, расположенной на материнской плате. Заряда батарейки хватает на несколько лет. CMOS используется для хранения информации о составе оборудования компьютера, а также о режимах его работы. Наличие этого вида памяти позволяет отслеживать время и календарь, даже если компьютер выключен. Таким образом, программы записанные в ПЗУ, считывают информацию о составе оборудования компьютера из микросхемы CMOS, после чего выполняют тестирование устройств ПК.

Cash (запас) обозначает быстродействующую буферную память между процессором и основной памятью. Кэш служит для частичной компенсации разницы в скорости процессора и основной памяти – туда попадают наиболее часто используемые данные. Когда процессор первый раз обращается к ячейке памяти, ее содержимое параллельно копируется в кэш, и в случае повторного обращения в скором времени может быть с гораздо большей скоростью выбрано из кэша [1, С.39-40].

Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды «ближе» к процессору, откуда их можно быстрее получить. Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой.

Новинки имеют кэш-память емкостью до 32 Мб

Еще один вид памяти – это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Он обычно выполняется в виде специальной платы, вставляемой в разъем системной шины компьютера, но на многих компьютерах он входит в состав системной (материнской) платы. Видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти — видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор-видеосигнал.

В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях видеоадаптера объем видеопамяти может быть увеличен до 512 Мбайт.

З наете ли вы, что такое оперативная память? Конечно, знаете. Это такое устройство, от которого зависит скорость работы компьютера. В общем, так оно и есть, только выглядит такое определение немного дилетантски. Но что в действительности представляет собой оперативная память? Как она устроена, как работает и чем один вид памяти отличается от другого?

Компьютерная память

Оперативная память, ОЗУ она же RAM (англ.) — это энергозависимая часть компьютерной памяти, предназначенной для хранения временных данных, обрабатываемых процессором. Хранятся эти данные в виде бинарной последовательности, то есть набора нулей и единиц. Энергозависимой же она называется потому, что для её работы необходимо постоянное подключение к источнику электрического тока. Стоит только отключить её от питания, как вся хранящаяся в ней информация будет утеряна.

Но если ОЗУ это одна часть компьютерной памяти, тогда что представляет собой её другая часть? Носителем этой части памяти является жесткий диск. В отличие от ОЗУ, он может хранить информацию, не будучи подключён к источнику питания. Жесткие диски, флешки и CD-диски — все эти устройства именуются ПЗУ, что расшифровывается как постоянное запоминающее устройство. Как и ОЗУ, ПЗУ хранят данные в виде нулей и единиц.

Для чего нужна ОЗУ

Тут может возникнуть вопрос, а зачем вообще нужна оперативная память? Разве нельзя выделить на жестком диске буфер для временного помещения обрабатываемых процессором данных? В принципе можно, но это был бы очень неэффективный подход.

Физическое устройство оперативной памяти таково, что чтение/запись в ней производится намного быстрее . Если бы вместо ОЗУ у вас было ПЗУ, компьютер бы работал очень медленно.

Читайте также:  Что можно пить на поминках

Физическое устройство ОЗУ

Физически ОЗУ представляет съёмную плату (модуль) с располагающимися на ней микросхемами памяти. В основе микросхемы лежит конденсатор — устройство, известное уже больше сотни лет.

Каждая микросхема содержит множество конденсаторов связанных в единую ячеистую структуру — матрицу или иначе ядро памяти. Также микросхема содержит выходной буфер — особый элемент, в который попадает информация перед тем, как быть переданной на шину памяти. Из уроков физики мы знаем, что конденсатор способен принимать только два устойчивых состояния: либо он заряжен, либо разряжен. Конденсаторы в ОЗУ играют ту же роль, что и магнитная поверхность жёсткого диска, то есть удержание в себе электрического заряда, соответствующего информационному биту. Наличие заряда в ячейке соответствует единице, а отсутствие — нулю.

Как в ОЗУ записывается и читается информация

Понять, как в ОЗУ происходит запись и считывание данных будет проще, если представить её в виде обычной таблицы. Чтобы считать данные из ячейки, на горизонтальную строку выдаётся сигнал выбора адреса строки (RAS). После того как он подготовит все конденсаторы выбранной строки к чтению, по вертикальной колонке подаётся сигнал выбора адреса столбца (CAS), что позволяет считать данные с конкретной ячейки матрицы.

Характеристика, определяющая количество информации, которое может быть записано или прочитано за одну операцию чтения/записи, именуется разрядностью микросхемы или по-другому шириной шины данных. Как нам уже известно, перед тем как быть переданной на шину микросхемы, а затем в центральный процессор, информация сначала попадает в выходной буфер. С ядром он связывается внутренним каналом с пропускной способностью равной ширине шины данных. Другой важной характеристикой ОЗУ является частота шины памяти. Что это такое? Это периодичность, с которой происходит считывание информации, а она совсем не обязательно должна совпадать с частотой подающегося на матрицу памяти сигнала, что мы и увидим на примере памяти DDR.

В современных компьютерах используется так называемая синхронная динамическая оперативная память — SDRAM. Для передачи данных в ней используется особый синхросигнал. При его подаче на микросхему происходит синхронное считывание информации и передача её в выходной буфер.

Представим, что у нас есть микросхема памяти с шириной шины данных 8 бит, на которую с частотой 100 МГц подаётся синхросигнал. В результате за одну транзакцию в выходной буфер по 8-битовому каналу попадает ровно 8 бит или 1 байт информации. Точно такой же синхросигнал приходит на выходной буфер, но на этот раз информация попадает на шину микросхемы памяти. Умножив частоту синхросигнала на ширину шины данных, мы получим ещё один важный параметр — пропускную способность памяти.

8 бит * 100 МГц = 100 Мб/с

Память DDR

Это был простейший пример работы SDR — памяти с однократной скоростью передачи данных. Этот тип памяти сейчас практически не используется, сегодня его место занимает DDR — память с удвоенной скоростью передачи данных. Разница между SDR и DDR заключается в том, что данные с выходного буфера такой ОЗУ читаются не только при поступлении синхросигнала, но и при его исчезновении. Также при подаче синхросигнала в выходной буфер с ядра памяти информация попадает не по одному каналу, а по двум, причём ширина шины данных и сама частота синхросигнала остаются прежними.

Для памяти DDR принято различать два типа частоты. Частота, с которой на модуль памяти подаётся синхросигнал, именуется базовой, а частота, с которой с выходного буфера считывается информация — эффективной. Рассчитывается она по следующей формуле:

эффективная частота = 2 * базовая частота

В нашем примере с микросхемой 8 бит и частотой 100 МГц это будет выглядеть следующим образом.

8 бит * (2 * 100 МГц) = 200 Мб/с

Чем отличаются DDR от DDR2, DDR3 и DDR4

Количеством связывающих ядро с выходным буфером каналов, эффективной частотой, а значит и пропускной способностью памяти. Что касается ширины шины данных (разрядности), то в большинстве современных модулей памяти она составляет 8 байт (64 бит). Допустим, что у нас есть модуль памяти стандарта DDR2-800. Как рассчитать его пропускную способность? Очень просто. Что такое 800? Это эффективная частота памяти в мегагерцах. Умножаем её на 8 байт и получаем 6400 Мб/с.

И последнее. Что такое пропускная способность мы уже знаем, а что такое объём оперативной памяти и зависит ли он от её пропускной способности? Прямой взаимосвязи между этим двумя характеристиками нет. Объём ОЗУ зависит от количества запоминающих элементов. И чем больше таких ячеек, тем больше данных может хранить память без их перезаписи и использования файла подкачки.

Ссылка на основную публикацию
Чтобы продолжить установку используйте параметр загрузки драйвера
Приветствую всех посетителей моего портала! Драйвера запоминающего устройства для установки – стандартное ПО, в использовании которого редко возникает необходимость. «Драйвер...
Что дает geforce experience
The server encountered an internal error or misconfiguration and was unable to complete your request. Please contact the server administrator...
Что дает перепрошивка смартфона
К моему большому сожалению, такой огромный пласт гик-культуры, как прошивка смартфонов, очень мало обозревается на IT-сайтах. Но бьюсь об заклад,...
Чтобы установить в системе новый язык нужно
Правильный ответ на вопрос: создать запись языка на странице «Языки», загрузить языковые файлы для данного языка через систему обновлений Другие...
Adblock detector