Формулы сложения и вычитания аргументов

Формулы сложения и вычитания аргументов

Определения синуса, косинуса, тангенса и котангенса.

Знаки тригонометрических функций:

Значения тригонометрических функций

Формулы синуса, косинуса, тангенса и котангенса угла (–α):

sin (–α) = – sin α
cos (–α) = cos α
tg (–α) = – tg α
ctg (–α) = – ctg α

Все формулы приведения можно получить, пользуясь следующими правилами:
1. В правой части формулы ставится тот знак, который имеет левая часть при условии

2. Если в левой части формулы угол равен /2 ± или 3/2±, то синус заменяется на косинус, тангенс на котангенс и наоборот, если угол равен ± или 2, то замены не происходит.

Формулы двойного угла.

Формулы перехода от суммы к произведению.

Формулы перехода от произведения к сумме.

Формулы понижения степени.

Преобразование выражения a·cos + b·sin путем введения вспомогательного аргумента.

,

где вспомогательный аргумент определяется из условий

К сожалению, страница на которую вы хотели попасть не существует.

Возможно, вы не правильно указали адрес или искомая страница была переименована.

Вы можете перейти на главную страницу или попробовать найти интересующий вас материал через карту сайта

Наиболее часто встречающиеся тригонометрические формулы:

(lacktriangleright) Основные тождества: [egin <|l|l|>hline sin^2 alpha+cos^2 alpha =1& mathrm, alpha cdot mathrm, alpha =1 \ &(sinalpha
e 0, cosalpha
e 0)\[0.5ex] hline &\ mathrm
, alpha=dfrac<sin alpha> <cos alpha>&mathrm, alpha =dfrac<cos alpha> <sin alpha>\&\ 1+mathrm^2, alpha =dfrac1 <cos^2 alpha>& 1+mathrm^2, alpha=dfrac1<sin^2 alpha>\&\ (cosalpha
e 0)& (sinalpha
e 0) \ hline end
]

(lacktriangleright) Формулы сложения углов: [egin <|l|r|>hline &\ sin<(alphapm eta)>=sinalphacdot cosetapm sinetacdot cosalpha & cos<(alphapm eta)>=cosalphacdot coseta mp sinalphacdot sineta\ &\ hline &\ mathrm, (alphapm eta)=dfrac<mathrm, alphapm mathrm, eta><1 mp mathrm, alphacdot mathrm, eta> & mathrm, (alphapmeta)=-dfrac<1mp mathrm, alphacdot mathrm, eta><mathrm, alphapm mathrm, eta>\&\ cosalphacoseta
e 0&sinalphasineta
e 0\ hline end
]

Читайте также:  Как столбец превратить в строку excel

(lacktriangleright) Формулы двойного и тройного углов: [egin <|lc|cr|>hline sin <2alpha>=2sin alphacos alpha & qquad &qquad & cos<2alpha>=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin <2alpha>&& & cos<2alpha>=2cos^2alpha -1\ & & & cos<2alpha>=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ cosalpha
e 0, cos2alpha
e 0 &&& sinalpha
e 0, sin2alpha
e 0\ hline &&&\ sin <3alpha>=3sin alpha -4sin^3alpha && & cos<3alpha>=4cos^3alpha -3cos alpha\&&&\ hline end
]

(lacktriangleright) Формулы понижения степени: [egin <|lc|cr|>hline &&&\ sin^2alpha=dfrac<1-cos<2alpha>>2 &&& cos^2alpha=dfrac<1+cos<2alpha>>2\&&&\ hline end]

(lacktriangleright) Формулы произведения функций: [egin <|c|>hline \ sinalphasineta=dfrac12igg(cos<(alpha-eta)>-cos<(alpha+eta)>igg)\\ cosalphacoseta=dfrac12igg(cos<(alpha-eta)>+cos<(alpha+eta)>igg)\\ sinalphacoseta=dfrac12igg(sin<(alpha-eta)>+sin<(alpha+eta)>igg)\\ hline end]

(lacktriangleright) Выражение синуса и косинуса через тангенс половинного угла: [egin <|l|r|>hline &\ sin<2alpha>=dfrac<2mathrm, alpha><1+mathrm^2, alpha> & cos<2alpha>=dfrac<1-mathrm^2, alpha><1+mathrm^2, alpha>\&\ cosalpha
e 0 & sinalpha
e 0\ hline end
]

(lacktriangleright) Формула вспомогательного аргумента: [egin <|c|>hline ext<Частный случай>\ hline \ sinalphapm cosalpha=sqrt2cdot sin<left(alphapm dfrac<pi>4
ight)>\\ sqrt3sinalphapm cosalpha=2sin<left(alphapm dfrac<pi>6
ight)>\\ sinalphapm sqrt3cosalpha=2sin<left(xpm dfrac<pi>3
ight)>\\ hline ext<Общий случай>\ hline\ asinalphapm bcosalpha=sqrtcdot sin<(alphapm phi)>, cosphi=dfrac a<sqrt>, sinphi=dfrac b<sqrt>\\ hline end
]

Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.

Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.

(lacktriangleright) Вывод формулы косинуса разности углов (cos<(alpha -eta)>=cosalphacoseta+sinalphasineta)

Рассмотрим тригонометрическую окружность и на ней углы (alpha) и (eta) . Пусть этим углам соответствуют точки (A) и (B) соответственно. Тогда координаты этих точек: (A(cosalpha;sinalpha), B(coseta;sineta)) .

Рассмотрим ( riangle AOB: angle AOB=alpha-eta) . По теореме косинусов:

(AB^2=AO^2+BO^2-2AOcdot BOcdot cos(alpha-eta)=1+1-2cos(alpha-eta) (1)) (т.к. (AO=BO=R) – радиус окружности)

По формуле расстояния между двумя точками на плоскости:

Таким образом, сравнивая равенства ((1)) и ((2)) :

Читайте также:  Найдите площадь плоской фигуры ограниченной линиями

Отсюда и получается наша формула.

(lacktriangleright) Вывод остальных формул суммы/разности углов:

Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения (sin x=cos(90^circ-x)) и (cos x=sin (90^circ-x)) :

разделим числитель и знаменатель дроби на (cosalphacoseta
e 0)
(при (cosalpha=0 Rightarrow mathrm,(alphapmeta)=mp mathrm,eta) , при (coseta=0 Rightarrow mathrm,(alphapmeta)=pm mathrm,alpha) ):

Таким образом, данная формула верна только при (cosalphacoseta
e 0) .

5) Аналогично, только делением на (sinalphasineta
e 0) , выводится формула котангенса суммы/разности двух углов.

(lacktriangleright) Вывод формул двойного и тройного углов:

Данные формулы выводятся с помощью предыдущих формул:

1) (sin 2alpha=sin(alpha+alpha)=sinalphacosalpha+sinalphacosalpha=2sinalphacosalpha)

Используя основное тригонометрическое тождество (sin^2alpha+cos^2alpha=1) , получим еще две формулы для косинуса двойного угла:

разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0 Rightarrow mathrm,2alpha=0) ):

Таким образом, эта формула верна только при (cosalpha
e 0) , а также при (cos2alpha
e 0) (чтобы существовал сам (mathrm,2alpha) ).

По тем же причинам при (sinalpha
e 0, sin2alpha
e 0) .

5) (sin3alpha=sin(alpha+2alpha)=sinalphacos2alpha+cosalphasin2alpha=sinalpha(1-2sin^2alpha)+cosalphacdot 2sinalphacosalpha=)

6) Аналогично выводится, что (cos3alpha=cos(alpha+2alpha)=4cos^3alpha-3cosalpha)

(lacktriangleright) Вывод формул понижения степени:

Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:

1) (cos2alpha=2cos^2alpha-1 Rightarrow cos^2alpha=dfrac<1+cos2alpha>2)

2) (cos2alpha=1-2sin^2alpha Rightarrow sin^2alpha=dfrac<1-cos2alpha>2)

Заметим, что в данных формулах степень синуса/косинуса равна (2) в левой части, а в правой части степень косинуса равна (1) .

(lacktriangleright) Вывод формул произведения функций:

1) Сложим формулы косинуса суммы и косинуса разности двух углов:

Получим: (cos(alpha+eta)+cos(alpha-eta)=2cosalphacoseta Rightarrow cosalphacoseta=dfrac12Big(cos(alpha-eta)+cos(alpha+eta)Big))

2) Если вычесть из формулы косинуса суммы косинус разности, то получим:

3) Сложим формулы синуса суммы и синуса разности двух углов:

(lacktriangleright) Вывод формул суммы/разности функций:

Обозначим (alpha+eta=x, alpha-eta=y) . Тогда: (alpha=dfrac2, eta=dfrac2) . Подставим эти значения в предыдущие три формулы:

Читайте также:  Xiaomi mi band 3 гарантия

Получили формулу суммы косинусов.

Получили формулу разности косинусов.

Получили формулу суммы синусов.

4) Формулу разности синусов можно вывести из формулы суммы синусов:

Аналогично выводится формула суммы котангенсов.

(lacktriangleright) Вывод формул выражения синуса и косинуса через тангенс половинного угла:

(разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0) и (sin2alpha=0) ):)

2) Так же, только делением на (sin^2alpha) , выводится формула для косинуса.

(lacktriangleright) Вывод формул вспомогательного угла:

Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.

Рассмотрим выражение (asin x+bcos x) . Домножим и разделим это выражение на (sqrt,) :

(asin x+bcos x=sqrtleft(dfrac a<sqrt>sin x+ dfrac b<sqrt>cos x
ight)=sqrtig(a_1sin x+b_1cos xig))

Заметим, что таким образом мы добились того, что (a_1^2+b_1^2=1) , т.к. (left(dfrac a<sqrt>
ight)^2+left(dfrac b<sqrt>
ight)^2=dfrac=1)

Таким образом, можно утверждать, что существует такой угол (phi) , для которого, например, (cos phi=a_1, sin phi=b_1) . Тогда наше выражение примет вид:

(sqrt,ig(cos phi sin x+sin phicos xig)=sqrt,sin (x+phi)) (по формуле синуса суммы двух углов)

Значит, формула выглядит следующим образом: [<large,sin (x+phi),>> quad ext <где >cos phi=dfrac a<sqrt>] Заметим, что мы могли бы, например, принять за (cos phi=b_1, sin phi=a_1) и тогда формула выглядела бы как [asin x+bcos x=sqrt,cos (x-phi)]

(lacktriangleright) Рассмотрим некоторые частные случаи формул вспомогательного угла:

(a) sin xpmcos x=sqrt2,left(dfrac1<sqrt2>sin xpmdfrac1<sqrt2>cos x
ight)=sqrt2, sin left(xpmdfrac<pi>4
ight))

(b) sqrt3sin xpmcos x=2left(dfrac<sqrt3>2sin xpm dfrac12cos x
ight)=2, sin left(xpmdfrac<pi>6
ight))

(c) sin xpmsqrt3cos x=2left(dfrac12sin xpmdfrac<sqrt3>2cos x
ight)=2,sinleft(xpmdfrac<pi>3
ight))

Ссылка на основную публикацию
Форге оф импаерс великие строения
Другое название: Кузница Империй Ниже мы приводим подробный гайд по игре Forge of Empires с советами как вам быстрее отстроить...
Троттлинг процессора что это
Простой компьютерный блог для души) Всем привет. Сегодня мы затронем тему процессоров, а если быть точнее, то такое явление как...
Троянские программы и хакерские утилиты
В данную категорию входят программы, осуществляющие различные несанкционированные пользователем действия: сбор информации и ее передачу злоумышленнику, ее разрушение или злонамеренную...
Форза хорайзен 3 список машин
Серия игр Forza всегда поражала количеством доступных автомобилей. На момент выхода игры доступно уже более 150 автомобилей, а разработчики обещают...
Adblock detector