Что такое грани вершины и ребра

Что такое грани вершины и ребра

Математика. 4 класс

Тема. «Многогранник. Элементы многогранника – грани, вершины, ребра».

Цели. Создать условия для расширения теоретических знаний о пространственных фигурах: ввести понятия «многогранник», «грани», «вершина», «ребро»; обеспечить развитие у школьников умения выделять главное в познавательном объекте; содействовать развитию пространственного воображения учащихся.

Учебные материалы. Учебник «Математика. 4 класс» (авт. В.Н. Рудницкая, Т.В. Юдачева); компьютер; проектор; презентация «Многоугольники»; печатные бланки «Координатный угол», «Многоугольники», «Задача»; модели многогранников, развертки многогранников; зеркала; ножницы.

Перед началом урока дети распределяются на три группы соответственно уровню знаний – высокий, средний, низкий.

I. Организационный момент

Учитель. Дорогие мои непоседы, в очередной раз я приглашаю вас в увлекательный мир математики. И я уверена в том, что и на этом уроке вы узнаете новое, закрепите изученное и сможете полученные знания применить на практике.

Сегодня наш урок мне хочется начать словами английского философа Роджера Бэкона о математике: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир». Я думаю, что на уроке мы непременно найдем подтверждение словам этого философа.

II. Повторение пройденного материала. Построение многоугольников по координатам

У. На уроках математики в 1-м, 2-м, 3-м классах мы изучали различные плоские геометрические фигуры, а также учились их строить. Я предлагаю вам построить в координатном угле плоские фигуры по данным координатам.

Задание выполняется на печатных бланках.

Постройте фигуру, если известны координаты А (0; 2), В (2; 5), С (9; 2). Какая фигура получилась?

Постройте прямоугольник, если точки А (3; 2) и В (6; 5) – его противоположные вершины. Назовите координаты противоположных вершин. Как по-другому называется эта фигура?

Постройте фигуру, если известны координаты ее вершин А (2; 3), В (2; 6), С (5; 8), D (8; 6), K (8; 3), М (5; 1). Какая фигура получилась?

– Как можно назвать все эти фигуры?

Дети. Это многоугольники.

У. Нам известно, что все многоугольники имеют вершины и стороны. Назовите и покажите их.

По одному человеку от группы выполняют задание у доски.

III. Знакомство с новым материалом

У. Сегодня я познакомлю вас с объемными геометрическими фигурами, которые называются многоугольниками. Их модели представлены у вас на столах.

На столах у учащихся объемные фигуры: куб, параллелепипед, пирамиды, призмы.

– Садитесь поудобнее, смотрите внимательно, слушайте старательно и запоминайте.

Знакомство с понятиями «многогранник», «грань», «вершина», «ребро»

– Если взять 4 треугольника, то можно создать объемную фигуру – пирамиду. Из квадратов можно получить другую фигуру – куб, из прямоугольников – параллелепипед. У вас на столе еще одна фигура – призма, которая составлена из прямоугольников и треугольников. Все эти фигуры называются многогранниками.

Каждый из многоугольников (в данном случае треугольников) называют гранью многогранника. А стороны многоугольников называют ребрами многогранника. И, конечно же, вершины многоугольника будут вершинами многогранника. Вот так выглядит чертеж многогранника на листе бумаги.

– Кажется, что фигура сделана из стекла. Как вы думаете, что изображено пунктиром на чертеже?

Д. Невидимые ребра.

Дети работают по рисунку у доски.

У. Назовите и покажите грани многогранника, его ребра и вершины.

Дети показывают указкой и перечисляют.

– Если разрезать пирамиду с вершины до основания по ребрам, то получится вот такая развертка.
А теперь, дорогие мои непоседы, отыщите на столе бланк с изображением многоугольника, внимательно прочитайте инструкцию:

1. Внимательно рассмотрите чертеж многоугольника.
2. Найдите нужную развертку многоугольника (модели на доске).
3. Соберите модель многоугольника.
4. Укажите число вершин __ , граней __ , ребер __ многоугольника.
5. Назовите каждую вершину __ , ребро __ , грань __ многоугольника.

Читайте также:  Как зайти в контакт если забыл логин

– На доске представлены развертки многогранников. Попробуйте по чертежу отыскать развертку своей фигуры и собрать многогранник. Работайте вместе, и, я думаю, у вас все получится.

Проверка выполнения задания (слайды 3, 4, 5).

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 12; ребер – 18; граней – 8;
вершины – Y, B, A, X, N, M, P, E, D, F, L, C;
ребра – YB, YX, BA, XA, XN, NM, AM, ME, EP, NP, ED, PF, DF, FL, LC, CD, LY, CB;
грани – BAMEDC, YXNPFL, YBAX, XAMN, NMEP, EDFP, DFLC, CLYB.

IV. Обобщение и систематизация знаний

У. Скажите, есть ли в окружающем нас мире предметы, которые имеют форму многогранников?

Выслушиваются ответы детей. Проводится импровизированная «прогулка» по школьному двору. Дети «рассматривают» модели школьного здания, подсобных помещений, которые имеют вид многогранников.

Волк и Заяц склеили из цветной бумаги домик. Сколько граней каждого цвета потребовалось? Форму какого многоугольника имеет грань каждого цвета?

Волк и Заяц склеили из цветной бумаги модель нового здания нашей школы.

Сколько граней имеет модель здания?

Форму какого многоугольника имеет грань каждого цвета?

Сколько граней каждого цвета понадобилось?

V. Закрепление ранее изученного

У. Ребята, представьте себя архитекторами, дизайнерами или строителями и попробуйте решить задачи.

Задание для группы 1

Найдите площадь, которую будет занимать новое школьное здание, если его длина 74 м, а ширина – 13 м. (Ответ: 962 кв. м.)

Задание для группы 2

Площадь игровой площадки во дворе нашей школы равна 1080 кв. м. Это на 1320 кв. м меньше, чем площадь хоккейной площадки. Вычислите площадь хоккейной площадки. (Ответ: 2400 кв. м)

Задание для группы 3

Под строительство нового здания для нашей школы отведен участок площадью 2500 кв. м. Известно, что здание будет шириной 13 м, длиной 74 м. Какая площадь участка останется под цветники и дорожки после постройки здания? (Ответ: 1) 962 кв. м; 2) 1538 кв. м)

Дети проверяют решения задач, объясняют, как решали.

VI. Итог урока

У. Оказывается, Роджер Бэкон был прав, сказав: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир».

Стереометрия изучает фигуры в пространстве. Наше пространство трехмерно, в нем есть три измерения — это длина, ширина и высота. Однако это не значит, что все окружающие нас тела имеют три измерения. Плоские фигуры имеют только два измерения, но также могут рассматриваться в стереометрии. Хотя стереометрия обычно акцентируется на объемных (трехмерных) телах.

Объемные тела называются геометрическими телами. У таких тел есть поверхности, которые отделяют их от окружающего пространства. Эти поверхности представляют собой плоские фигуры. Например, куб — это объемное тело, его поверхность состоит из шести квадратов. Шар — объемное тело, его поверхность — сфера.

Читайте также:  Лучшие этажи в 17 этажном доме

Поверхности многих геометрических тел (но не всех) являются многоугольниками (четырехугольниками, шестиугольниками, треугольниками и др.). Здесь под многоугольником понимается фигура, состоящая из сторон и ограниченной ими внутренней области. Поверхность, состоящую из многоугольников (или фигуру, чья поверхность состоит из многоугольников), называют многогранником.

Поверхности многогранника называют гранями. По-сути грани представляют собой плоскости, ограниченные сторонами многоугольников, из которых состоит многогранник. Сами стороны многоугольников называются ребрами. По-сути они представляют собой отрезки. Концы ребер соединены между собой, эти точки соединения называют вершинами многогранника.

Также в многогранниках выделяют диагонали. Это отрезки, которые соединяют вершины разных граней.

С каждым правильным многогранником связаны определённые углы, характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс:

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

По теореме Декарта, он равен делённым на число вершин (т.е. суммарный дефект при всех вершинах равен ).

Трёхмерным аналогом плоского угла является телесный угол. Телесный угол Ω при вершине правильного многогранника выражается через двугранный угол между смежными гранями этого многогранника по формуле:

Телесный угол, стягиваемый гранью правильного многогранника, с вершиной в центре этого многогранника, равен телесному углу полной сферы ( стерадиан), делённому на число граней. Он также равен угловому дефекту дуального к данному многогранника.

Различные углы правильных многогранников приведены в следующей таблице. Числовые значения телесных углов даны в стерадианах. Константа – золотое сечение.

Многогранник Двугранный угол
θ
Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° 60° π π
куб 90° 1 90°
октаэдр 109.47° √2 60°, 90°
додекаэдр 116.57° 108°
икосаэдр 138.19° 60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ — двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h — величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой — радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r) Радиус срединной сферы (ρ) Радиус описанной сферы (R) Площадь поверхности (S) Объём (V)
тетраэдр
куб
октаэдр
додекаэдр
икосаэдр

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

Читайте также:  Как соединить два роутера через кабель

История

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент — эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида [1] . Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики — законов Кеплера, — изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).

Ссылка на основную публикацию
Что дает geforce experience
The server encountered an internal error or misconfiguration and was unable to complete your request. Please contact the server administrator...
Форге оф импаерс великие строения
Другое название: Кузница Империй Ниже мы приводим подробный гайд по игре Forge of Empires с советами как вам быстрее отстроить...
Форза хорайзен 3 список машин
Серия игр Forza всегда поражала количеством доступных автомобилей. На момент выхода игры доступно уже более 150 автомобилей, а разработчики обещают...
Что дает перепрошивка смартфона
К моему большому сожалению, такой огромный пласт гик-культуры, как прошивка смартфонов, очень мало обозревается на IT-сайтах. Но бьюсь об заклад,...
Adblock detector