Что находится на жестком диске компьютера

Что находится на жестком диске компьютера

Жесткий диск (HDD, ВИНТ, ВИНЧЕСТЕР) – это накопитель информации в персональном компьютере. Жесткий диск – предназначен для хранения и передачи информации. На жестком диске данные хранятся на магнитной поверхности диска. Информация записывается и снимается с помощью магнитных головок. Внутри жесткого диска может быть установлено несколько пластин — дисков. Двигатель, вращающий диск, включается при подаче питания на диск и остается включенным до снятия питания. Двигатель вращается с постоянной скоростью, измеряемой в оборотах в минуту (rpm). Данные организованы на диске в цилиндрах, дорожках и секторах. Цилиндры — концентрические дорожки на дисках, расположенные одна над другой. Дорожка затем разделяется на сектора. Диск имеет магнитный слой на каждой своей стороне. Каждая пара головок одета как бы на «вилку», обхватывающую каждый диск. Эта «вилка» перемещается над поверхностью диска с помощью отдельного серводвигателя (а не шагового, как часто ошибочно думают — шаговый двигатель не позволяет быстро перемещаться над поверхностью). Все жесткие диски имеют резервные сектора, которые используются его схемой управления, если на диске обнаружены дефектные сектора.

Устройство жесткого диска:

Интерфейсы жестких дисков

Интерфейсом накопителей называется набор электроники, обеспечивающий обмен информацией между контроллером устройства (кеш-буфером) и компьютером. Интерфейс — это способ взаимодействия жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически — это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс — включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

IDE — в переводе с английского «Integrated Drive Electronics», что буквально означает — «встроенный контроллер». Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде «Усовершенствованная технология подсоединения».

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE — и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA), характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи — является самым массовым для применения в ПК.

Интерфейсы SATA, SATA 2(II), SATA 3 (III)

В 2002 году появились первые жёсткие диски, с прогрессивным, на то время, интерфейсомSATA. Максимальная скорость передачи данных которого, составляла 150 Мбайт/c.

Если говорить о преимуществах, то первое что бросается в глаза – это замена 80-жильного шлейфа (рис.1), на семижильный кабель SATA (рис.3), который намного устойчивее к помехам, что позволило увеличить стандартную длину кабеля с 46 см до 1м. Также, были разработаны соответствующие разъёмы SATA (рис.4), которые в несколько раз компактнее, нежели разъёмы предшествующего стандарта IDE. Это позволило разместить на материнской плате больше разъёмов, теперь на новых материнских платах можно встретить более 6 разъёмов SATA, против традиционных 2-3 IDE, в старых материнских платах ориентированных на данный стандарт.

Далее, появился стандарт SATA ІІ, скорость передачи данных докатилась до 300 Мбайт/c. Данный стандарт заимел множество преимуществ, среди них: технология Native Command Queuing (именно она позволила достичь скорости 300Мбайт/с), горячее подключение дисков, выполнение нескольких команд одной транзакцией и другие.

Ну, а в 2009 году на свет был представлен интерфейс SATA 3. Данным стандартом предусмотрена передача данных со скоростью 600 Мбайт/c (для жёстких дисков «ой» как избыточно).

В актив улучшений интерфейса можно дописать более эффективное управление питанием и, конечно же, повышение скорости.

Следует отметить, что SATA, SATA II и SATA III, полностью совместимы.

  • 1956 год — жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт.
  • 1980 год — первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
  • 1981 год — 5,25-дюймовый Shugart ST-412, 10 Мб.
  • 1986 год — стандарты SCSI, ATA.
  • 1990 год — максимальная ёмкость 320 Мб.
  • 1995 год — максимальная ёмкость 2 Гб.
  • 1997 год — максимальная ёмкость 10 Гб.
  • 1998 год — стандарты UDMA/33 и ATAPI.
  • 1999 год — IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
  • 2000 год — IBM выпускает Microdrive ёмкостью 500 Мб и 1 Гб.
  • 2002 год — стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
  • 2003 год — появление SATA.
  • 2003 год — Hitachi выпускает Microdrive ёмкостью 2 Гб.
  • 2004 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 2.5 и 5 Гб.
  • 2005 год — максимальная ёмкость 500 Гб.
  • 2005 год — стандарт Serial ATA 3G.
  • 2005 год — появление SAS.
  • 2005 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 8 Гб.
  • 2006 год — применение перпендикулярного метода записи в коммерческих накопителях.
  • 2006 год — появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
  • 2006 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 12 Гб.
  • 2007 год — Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
  • 2009 год — на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
  • 2009 год — Samsung выпустила первые жёсткие диски с интерфейсом USB 2.0
  • 2009 год — Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб
  • 2009 год — появление стандарта SATA 3.0.
  • 2010 год — Seagate выпускает жёсткий диск объемом 3 Тб .
  • 2010 год — Samsung выпускает жёсткий диск с пластинами, у которых плотность записи — 667 Гб на одной пластине
  • 2011 год — Western Digital выпустила первый диск на 750 Гб пластинах.
Читайте также:  Расцвет сил это какой возраст

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Жесткий диск или винчестер является одним из основных компонентов любого компьютера — стационарного или мобильного. Именно на него устанавливается операционная система, там же хранятся все данные, файлы и игры. Без него компьютер никогда не начнет свою работу, поэтому важно знать, где в компьютере находится жесткий диск, как распознать его в системе.

Расположение жесткого диска в системном блоке

Если самостоятельно не заниматься сборкой компьютера, то вполне возможно возникнет вопрос: «Где в компьютере находится жесткий диск?». Для того чтобы это узнать, понадобится пара глаз и отвертка.

Сначала следует избавиться от боковой панели компьютера, которая снимается после удаления болтов. Отодвигать ее нужно аккуратно, слегка надавливая и держась за выемку на самой панели. Почти все корпуса сделаны по одному стандарту, поэтому панель отодвигается в сторону задней части корпуса.

После этого можно увидеть всю «начинку» компьютера, и где находится жесткий диск, в том числе. Можно заметить, что от него отходит два кабеля, один из которых отвечает за питание винчестера, а другой осуществляет подключение к материнской плате и всей системе в целом. Где находится жесткий диск в компьютере? Фото смотрите выше.

Расположение жесткого диска в системе

Если физически уже известно, где в компьютере находится жесткий диск, то осталось найти его в самой системе.

Для начала стоит открыть окно «Мой компьютер», оно иногда еще называется «Этот компьютер» (зависит от операционной системы). В нем сразу видно наличие двух дисков — C и D. На первом диске хранится вся системная информация, в том числе и операционная система, а на втором диске находятся второстепенные данные, например, фильмы, музыка, а иногда и игры.

Когда происходит форматирование жесткого диска, удаляются данные только с диска С, а информация на другом диске не затрагивается.

Итак, нажав по любому из дисков правой кнопкой мыши, нужно выбрать опцию «Свойства». После этого открывается окошко с доступными свойствами выбранного диска. Выбирая вкладку «Оборудование», можно заметить, что там отображено или отображены все накопители, которые доступны в данный момент.

Увидеть можно исключительно наименование модели и не более того, но если нужно не только узнать, где находится жесткий диск в компьютере, но и его состояние, то следует установить программу Crystal Disc, которая отображает данные и общее состояние винчестера.

В случае, когда необходимо узнать, сколько занято, или сколько доступно свободного места, то стоит открыть окно «Мой компьютер». Там отображены все доступные диски и оставшееся место на них, а также, сколько занято на данный момент.

Подключение второго жесткого диска

Часто бывают случаи, что выход новых игр или фильмов в высоком качестве вынуждает приобрести новый накопитель, то есть, жесткий диск. Скорость установки и распознавания его в системе может занимать разное количество времени, в зависимости от новизны материнской платы и умений самого пользователя.

Итак, пришло время узнать, где найти жесткий диск в компьютере, с помощью программы BIOS. Для начала нужно убедиться, что искомое оборудование правильно установлено и подключено к материнской плате. Немаловажно и состояние самого винчестера, так как если он куплен в комиссионном магазине, то есть уже был в использовании, то стоит проверить его исправность в месте покупки.

Чтобы попасть в меню BIOS, нужно после перезапуска компьютера мгновенно и неоднократно нажимать одну из двух кнопок: F2 или Del. Какую именно — зависит только от материнской платы. Когда появляется искомое меню, нужно выбрать строку Advanced, где станут доступны настройки конфигурации, которые иногда именуются Configuration. Именно в конфигурациях есть строка контроллера, где нужно изменить значение Disabled на значение Enabled. После этого перезагружается компьютер и повторяется манипуляция для попадания в меню BIOS. После этого можно заметить появление второго жесткого диска. Таким образом с помощью программы BIOS можно узнать, где посмотреть жесткий диск в компьютере.

Программа для проверки жесткого диска Crystal Disk info

Одной из популярных программ для оценки состояния жесткого диска является Crystal Disk info, которая имеет не только понятное меню, но и поддержку русского языка.

Читайте также:  Остановить дальнейшую обработку правил что это

Данная программа демонстрирует полное описание технических характеристик жесткого диска. Здесь же можно замерить текущую температуру устройства, узнать количество включений, общее время работы, скорость вращения и так далее. Исходя из представленных данных, программа делает вывод по техническому состоянию винчестера.

Программа для замера параметров жесткого диска Crystal Disk Mark

Данная утилита тоже является весьма популярной среди пользователей, которые приобретают товары через интернет-магазины и с «рук». Так как она поддерживает все типы накопителей, включая и твердотельные жесткие диски, то способна использовать самые разнообразные алгоритмы для фиксирования реальных данных.

Благодаря этой программе можно, к примеру, узнать, какова реальная скорость чтения/записи у любого жесткого диска.

HDD, жёсткий диск, винчестер — всё это названия одного хорошо известного устройства хранения данных. В этом материале мы расскажем вам о технической основе таких накопителей, о том, каким образом на них может храниться информация, и об остальных технических нюансах и принципах функционирования.

Устройство жёсткого диска

Исходя из полного названия данного запоминающего устройства — накопитель на жёстких магнитных дисках (НЖМД) — можно без особых усилий понять, что лежит в основе его работы. Благодаря своей дешевизне и долговечности эти носители информации устанавливают в различные компьютеры: ПК, ноутбуки, серверы, планшеты и т.д. Отличительной чертой HDD является возможность хранить огромные объёмы данных, обладая при этом совсем небольшими габаритами. Ниже мы расскажем о его внутреннем устройстве, принципах работы и прочих особенностях. Приступим!

Гермоблок и плата электроники

Зелёная стеклоткань и дорожки из меди на ней, вместе с разъёмами для подключения блока питания и гнездом SATА называются платой управления (Printed Circuit Board, PCB). Данная интегральная схема служит для синхронизации работы диска с ПК и руководством всех процессов внутри HDD. Корпус из алюминия чёрного цвета и то, что внутри него, называется герметичным блоком (Head and Disk Assembly, HDA).

В центре интегральной схемы расположен чип большого размера — это микроконтроллер (Micro Controller Unit, MCU). В сегодняшних HDD микропроцессор содержит в себе два компонента: центральный вычислительный блок (Central Processor Unit, CPU), который занимается всеми расчётами, и канал чтения и записи — специальное устройство, переводящее аналоговый сигнал с головки в дискретный, когда она занята чтением и наоборот — цифровой в аналоговый во время записи. Микропроцессор обладает портами ввода/вывода, при помощи которых он управляет остальными элементами, расположенными на плате, и совершает обмен информацией через SATA-подключение.

Другой чип, расположенный на схеме, является DDR SDRAM памятью (memory chip). Её количество предопределяет объём кеша винчестера. Данный чип разделён на память прошивки, частично содержащуюся во флеш-накопителе, и буферную, необходимую процессору для того, чтобы загружать модули прошивки.

Третий чип называется контроллером управления двигателем и головками (Voice Coil Motor controller, VCM controller). Он управляет дополнительными источниками электропитания, которые расположены на плате. От них получают питание микропроцессор и предусилитель-коммутатор (preamplifier), содержащийся в герметичном блоке. Этот контроллер требует больше энергии, чем остальные компоненты на плате, так как отвечает за вращение шпинделя и движение головок. Ядро предусилителя-коммутатора способно работать, будучи нагретым до 100° C! Когда на НЖМД подаётся питание, микроконтроллер выгружает содержимое флеш-микросхемы в память и начинает выполнение заложенных в неё инструкций. Если коду не удастся должным образом загрузиться, то HDD не сможет даже начать раскрутку. Также флеш-память может быть встроена в микроконтроллер, а не содержаться на плате.

Расположенный на схеме датчик вибрации (shock sensor) определяет уровень тряски. Если он сочтёт её интенсивность опасной, то будет послан сигнал контроллеру управления двигателем и головками, после чего он немедленно паркует головки или вовсе останавливает вращение HDD. В теории, данный механизм призван обеспечивать защиту HDD от различных механических повреждений, правда, на практике у него это не сильно выходит. Поэтому не стоит ронять жёсткий диск, ведь это способно повлечь за собой неадекватную работу вибродатчика, что может стать причиной полной неработоспособности устройства. Некоторые НЖМД обладают сверхчувствительными к вибрации датчиками, которые реагируют на малейшее её проявление. Данные, которые получает VCM, помогают в корректировке движения головок, поэтому диски оборудуются как минимум двумя такими датчиками.

Ещё одно устройство, созданное для защиты HDD — ограничитель переходного напряжения (Transient Voltage Suppression, TVS), призванный предотвращать возможный выход из строя в случае скачков напряжения. На одной схеме таких ограничителей может быть несколько.

Поверхность гермоблока

Под интегральной платой располагаются контакты от моторов и головок. Тут же можно увидеть почти невидимое техническое отверстие (breath hole), которое выравнивает давление внутри и снаружи герметичной зоны блока, разрушающее миф о том, что внутри винчестера находится вакуум. Внутренняя его область покрыта специальным фильтром, который не пропускает пыль и влагу непосредственно в HDD.

Внутренности гермоблока

Под крышкой герметичного блока, представляющей собой обычный пласт металла и резиновую прокладку, которая защищает его от попадания влаги и пыли, находятся магнитные диски.

Они также могут называться блинами или пластинами (platters). Диски обычно создаются из стекла или алюминия, который был предварительно отполирован. Затем они покрываются несколькими слоями различных веществ, в числе которых присутствует и ферромагнетик — благодаря ему и имеется возможность записывать и хранить информацию на жёстком диске. Между пластинами и над самым верхним блином располагаются разделители (dampers or separators). Они выравнивают потоки воздуха и снижают акустические шумы. Обычно изготавливаются из пластика или алюминия.

Читайте также:  Электронная почта как она пишется

Сепараторные пластины, которые были изготовлены из алюминия, лучше справляются с понижением температуры воздуха внутри герметичный зоны.

Блок магнитных головок

На концах кронштейнов, находящихся в блоке магнитных головок (Head Stack Assembly, HSA), расположены головки чтения/записи. Когда шпиндель остановлен, они должны находиться в препаровочной области — это место, где располагаются головки исправного жёсткого диска в то время, когда вал не работает. В некоторых HDD парковка происходит на пластиковых препаровочных областях, которые расположены вне пластин.

Для нормальной работы жёсткого диска требуется как можно более чистый воздух, содержащий минимум сторонних частиц. Со временем в накопителе образовываются микрочастицы смазки и металла. Чтобы их выводить, HDD оборудуются циркуляционными фильтрами (recirculation filter), которые постоянно собирают и задерживают очень маленькие частицы веществ. Они устанавливаются на пути воздушных потоков, которые образуются из-за вращения пластин.

В НЖМД устанавливают неодимовые магниты, способные притягивать и удерживать вес, который может больше собственного в 1300 раз. Предназначение этих магнитов в HDD — ограничение движения головок путем удержания их над пластиковыми или алюминиевыми блинами.

Ещё одной частью блока магнитных головок является катушка (voice coil). Вместе с магнитами она образует привод БМГ, который вместе с БМГ составляет позиционер (actuator) — устройство, перемещающее головки. Защитный механизм для этого устройства называется фиксатором (actuator latch). Он освобождает БМГ, как только шпиндель наберёт достаточное число оборотов. В процессе освобождения участвует давление потока воздуха. Фиксатор предотвращает какие-либо движения головок в препаровочном состоянии.

Под БМГ будет находиться прецизионный подшипник. Он поддерживает плавность и точность данного блока. Тут же находится выполненная из алюминиевого сплава деталь, которая называется коромыслом (arm). На её конце, на пружинной подвеске, расположены головки. От коромысла идет гибкий кабель (Flexible Printed Circuit, FPC), ведущий в контактную площадку, которая соединяется с платой электроники.

Вот так выглядит катушка, которая соединена с кабелем:

Здесь можно увидеть подшипник:

Вот тут изображены контакты БМГ:

Прокладка (gasket) помогает обеспечить герметичность сцепления. Благодаря этому в блок с дисками и головками воздух попадает только через отверстие, которое выравнивает давление. Контакты данного диска покрыты тончайшей позолотой, что улучшает проводимость.

Типичная сборка кронштейна:

На окончаниях пружинных подвесов находятся малогабаритные детали — слайдеры (sliders). Они помогают считывать и записывать данные, поднимая головку над пластинами. В современных накопителях головки работают, располагаясь на расстоянии 5-10 нм от поверхности металлических блинов. Элементы считывания и записи информации расположены на самых концах слайдеров. Они настолько малы, что увидеть их можно только воспользовавшись микроскопом.

Эти детали не являются абсолютно плоскими, так как имеют на себе аэродинамические канавки, служащие для стабилизации высоты полёта слайдера. Воздух под ним создаёт подушку (Air Bearing Surface, ABS), которая поддерживает параллельный поверхности пластины полёт.

Предусилитель — чип, отвечающий за управление головками и усиление сигнала к ним или от них. Расположен он непосредственно в БМГ, потому как сигнал, который производят головки, обладает недостаточной мощностью (около 1 ГГц). Без усилителя в герметичной зоне он бы просто рассеялся по пути к интегральной схеме.

От этого устройства в сторону головок идёт больше дорожек, нежели к герметичной зоне. Объясняется это тем, что жёсткий диск может взаимодействовать только с одной из них в определённый момент времени. Микропроцессор отправляет запросы предусилителю, чтобы он выбрал нужную ему головку. От диска к каждой из них идёт по несколько дорожек. Они отвечают за заземление, чтение и запись, управление миниатюрными приводами, работу со специальным магнитным оборудованием, которое может управлять слайдером, что позволяет увеличить точность расположения головок. Одна из них должна вести к нагревателю, который регулирует высоту их полёта. Работает эта конструкция так: из нагревателя тепло передаётся подвеске, которая соединяет слайдер и коромысло. Подвес создаётся из сплавов, которые имеют отличающиеся параметры расширения от поступающего тепла. При повышении температуры он изгибается в сторону пластины, тем самым уменьшая расстояние от неё до головки. При уменьшении количества тепла, происходит обратное действие — головка отдаляется от блина.

Вот таким образом выглядит верхний разделитель:

На этой фотографии находится герметичная зона без блока головок и верхнего сепаратора. Также можно заметить нижний магнит и прижимное кольцо (platters clamp):

Данное кольцо сдерживает блоки блинов вместе, предотвращая всякое их движение относительно друг друга:

Сами пластины нанизаны на вал (spindle hub):

А вот что находится под верхней пластиной:

Как можно понять, место для головок создаётся при помощи специальных разделительных колец (spacer rings). Это высокоточные детали, которые производятся из немагнитных сплавов или полимеров:

На дне гермоблока находится пространство для выравнивания давления, расположенное прямо под воздушным фильтром. Воздух, который находится вне герметичного блока, безусловно, содержит в себе частицы пыли. Для решения данной проблемы, устанавливается многослойный фильтр, который гораздо толще того же циркулярного. Иногда на нём можно обнаружить следы силикатного геля, который должен абсорбировать в себя всю влагу:

Заключение

В этой статье было приведено подробное описание внутренностей HDD. Надеемся, этот материал был вам интересен и помог узнать много нового из сферы компьютерного оборудования.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Ссылка на основную публикацию
Что дает geforce experience
The server encountered an internal error or misconfiguration and was unable to complete your request. Please contact the server administrator...
Форге оф импаерс великие строения
Другое название: Кузница Империй Ниже мы приводим подробный гайд по игре Forge of Empires с советами как вам быстрее отстроить...
Форза хорайзен 3 список машин
Серия игр Forza всегда поражала количеством доступных автомобилей. На момент выхода игры доступно уже более 150 автомобилей, а разработчики обещают...
Что дает перепрошивка смартфона
К моему большому сожалению, такой огромный пласт гик-культуры, как прошивка смартфонов, очень мало обозревается на IT-сайтах. Но бьюсь об заклад,...
Adblock detector